## From Target to Translational Funding: The journey from academic discovery to an investable therapeutic

#### Jon Collins, PhD

Director, Therapeutics Research Translation CSO, Pinnacle Hill Office of the Vice Chancellor for Research UNC Chapel Hill

#### Bryan Baines, RPh

Director of Scientific Collaborations and Liaison to Four Points Innovation Office of Technology Commercialization Duke University



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



#### **Presentation overview**

- Begin with the end goal in mind!
- Drug development cost, failure, and risk
- Targets & Target Validation
- Unmet need & the medicine proposition
- Commercial considerations
- Translational funding landscape



## The Target Product Profile (TPP): A living document

| Product Targets               | Preferred | Minimum |
|-------------------------------|-----------|---------|
| Therapeutic Modality          |           |         |
| Primary Product Indication    |           |         |
| Patient Population            |           |         |
| Mechanism of Action (MOA)     |           |         |
| Treatment Duration            |           |         |
| Route of Administration       |           |         |
| Dosage Form                   |           |         |
| Dose Regimen                  |           |         |
| Efficacy                      |           |         |
| Safety Profile                |           |         |
| Product Stability and Storage |           |         |

# Drug discovery & development is risky and expensive (mAb example)



Clinical probabilities & costs for novel non-oncology mAb prog Paul et al. (2010) Nat Rev Genet 9:203-14 Custom clinical probabilities of success

4

#### Why do drugs fail? How to mitigate this risk?



Hay et al. (2014) Nat. Biotech. 32:40-51 Arrowsmith & Miller (2013) Nat. Rev. Drug. Disc. 12:569

## Targets for successful drugs are significantly enriched for genetic evidence



|                       | p(progress/genetic support)/(progress/no genetic support) |               |               |  |  |
|-----------------------|-----------------------------------------------------------|---------------|---------------|--|--|
| Progression           | GWASdb and OMIM                                           | GWASdb        | OMIM          |  |  |
| Phase I to phase II   | 1.2 (1.1-1.3)                                             | 1.2 (1.1-1.3) | 1.2 (1.1-1.3) |  |  |
| Phase II to phase III | 1.5 (1.3-1.7)                                             | 1.4 (1.2-1.7) | 1.6 (1.3-1.9) |  |  |
| Phase III to approval | 1.1 (1.0-1.2)                                             | 1.0 (0.8-1.2) | 1.1 (0.9-1.3) |  |  |
| Phase I to phase III  | 1.8 (1.5-2.1)                                             | 1.8 (1.4-2.1) | 1.9 (1.5-2.3) |  |  |
| Phase I to approval   | 2.0 (1.6-2.4)                                             | 1.8 (1.3-2.3) | 2.2 (1.6-2.8) |  |  |

Nelson et al. (2015) Nat Genet 47:856-60 Plenge et al, (2013) Nat Rev Drug Disc: 12: 581-594

# Support of genetic evidence for the most prescribed and top grossing drugs

9 of 17 (53%) targets for the 20 most prescribed drugs in the US have supporting genetic evidence

| anta                     | Primary                    | US Rx      |                 |
|--------------------------|----------------------------|------------|-----------------|
| Drug                     | Indication                 | (Millions) | Target(s)       |
| Atorvastatin/Simvastatin | Hyperlipidemia             | 162        | HMGCR           |
| Levothyroxine            | Hypothyroidism             | 114        | THRA; THRB      |
| Lisinopril               | Hypertension               | 111        | ACE             |
| Metoprolol/Atenolol      | Hypertension               | 101        | ADRB1           |
| Metformin Hydrochloride  | Type 2 Diabetes            | 81         | GPDH; AMPK      |
| Amlodipine Besylate      | Hypertension               | 75         | CACNA1C         |
| Omeprazole               | Gastric Reflux             | 71         | ATP4A           |
| 🖌 Losartan Potassium     | Hypertension               | 49         | AGTR1           |
| Albuterol                | Asthma, COPD               | 47         | ADRB2           |
| Gabapentin               | Epilepsy                   | 44         | CACNA2D1        |
| Hydrochlorothiazide      | Hypertension               | 43         | SLC12A3         |
| Acetaminophen;           |                            |            | PTGS1/2;        |
| Hydrocodone              | Pain                       | 43         | OPRM1/D1/K1     |
| Sertraline Hydrochloride | Depression                 | 37         | SLC6A4          |
| Furosemide               | Hypertension               | 33         | SLC12A1;SLC12A2 |
| Fluticasone              | Asthma, Allergy            | 30         | NR3C1           |
| Acetaminophen            | Pain                       | 29         | PTGS1;PTGS2     |
| Amoxicillin              | <b>Bacterial Infection</b> | 28         |                 |
| Alprazolam               | Anxiety                    | 27         | GABRA1/2/3/5    |

From ClinCalc.com DrugStats Database, accessed on 10/04/2019

#### Support of genetic evidence for the top grossing drugs

| Drug                    | Primary Indication   | US Sales<br>(\$ Billions) | Target(s)   |
|-------------------------|----------------------|---------------------------|-------------|
| ✓Humira/Enbrel/Remicade | Autoimmune           | 22.2                      | TNF         |
| ✓Victoza/Trulicity      | Type 2 Diabetes      | 5.2                       | GLP1R       |
| 🗸 Eylea                 | Macular Degeneration | 4.1                       | VEGFA;PGF   |
| Neulasta                | Neutropenia          | 3.9                       | CSF3R       |
| Eliquis                 | Stroke, DVT          | 3.8                       | F10         |
| Lyrica                  | Epilepsy, Pain       | 3.6                       | CACNA2D1    |
| ✓ Stelara               | Autoimmune           | 3.5                       | IL12B;IL23A |

8 of top 20 are for oncology indications (\$32B; not shown)

2 of top 20 are for HIV (\$6.2B; not shown)

Remaining 10 represent 7 unique mechanisms

6 of 7 (86%) are supported by human genetic evidence

#### Human genetics data & assessment of target safety



Carss et al. (2023) Nat Rev Drug Discovery, 22: 145-162

## Target validation is critical

Does a potential drug target have a key role in a disease process?

Will modulation of the target be effective in a defined patient population?

Establishing target-disease linkage:

- Human genetic data  $\rightarrow$  Functional consequences?
- Existing human POC or other human translational data
- Target signaling pathways and implication in disease
- Direct interacting partners of target that are genetically or clinically implicated in disease
- Genetic and/or pharmacological target manipulation in in vitro and in vivo systems → ideally humanized or using patient-derived samples
- Potential compensatory pathways or modes of action that could affect treatment
- Resistance mechanisms



8

#### Tool compounds & target validation: Quality matters!

#### Pharmacological manipulation of the target to assess:

- Linkage to disease biology
- Is there a target or chemotype-related safety issue

#### It is paramount that the tool compound be of sufficient quality to assess the above points

- Binding
  - IC<sub>50</sub> < 100 nM
  - Molecular pharmacology is understood
- Selectivity over related targets
  - Minimally >10x, preferably >100x
- Solubility
  - >0.05 ug/mL in low % DMSO solutions
  - Soluble at relevant concentrations used in assays
- Cell penetrance for intracellular targets
  - Permeable
  - Minimal transporter efflux (Pgp)
- LogP: high LogP leads to promiscuity & increased risk of toxicity
- Is not chemically reactive, unless the intended MoA needs to be selective and well characterized
- A structurally-related inactive analog can be a great negative control

## Pillars of pharmacological tool validation

- 1. Exposure at site of action
  - Biochemical and whole-cell activities correlation
  - Confirm pharmacologically-relevant intracellular concentrations inside cells (LCMS as an example)
- 2. Target engagement
  - Functional probes or endpoints to measure intracellular occupancy (small molecule: enzyme product or substrate levels)
  - Proteomics methods (small molecule: CETSA)
  - Can be challenging
- 3. Functional pharmacology
  - Measurement of <u>proximal</u> biomarker (phosphorylated kinase, methylated histone, levels of secreted protein)
- 4. Desired phenotypic perturbation
  - Disease-relevant changes in naïve tissues and cell systems (bronchorelaxation of airway tissue)
  - Ideal to have high degree of confidence in clinical translatability



Modified from Jones, et al, Nature Chemical Biology, 2013, 9, 195-199

### Building the preclinical assays

![](_page_10_Figure_1.jpeg)

## Secondary Assays

![](_page_10_Picture_3.jpeg)

- Quality of chemical matter
- 2° and orthogonal assays to validate target engagement is specific (PAINS, aggregators, insoluble compounds, fluorescence interferers)
- Selectivity assays
- Cell-based assays with diseaserelevant readouts
- Biomarkers of target engagement
- Physicochemical & ADME/DMPK assays

#### In vivo analysis

![](_page_10_Picture_11.jpeg)

- PK studies to support design of efficacy studies and understand plasma and tissue exposures
- Development of biomarkers of target engagement
- Development of translational disease biomarkers
- Efficacy in translationallyrelevant animal models
- Development of PK/PD relationship

## Preclinical tractability

What is the **best modality** for a therapeutic (small molecule, antibody or other)?

|   | Small Molecule                                                                     | Biologic                                                                                                                           |
|---|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| • | Chemically synthesized                                                             | From living cells                                                                                                                  |
| • | Low molecular weight <ul> <li>Extensive distribution</li> </ul>                    | <ul> <li>High molecular weight</li> <li>Limited distribution</li> </ul>                                                            |
| ٠ | Metabolism important <ul> <li>Active or toxic metabolites</li> </ul>               | <ul> <li>Metabolism not a concern</li> <li>Peptides, amino acids, inactive</li> </ul>                                              |
| • | Immunogenicity not typically a concern                                             | Immunogenicity can be a concern                                                                                                    |
| • | Less targeted<br>➤ Off target toxicity possible from parent drug<br>or metabolites | <ul> <li>Highly targeted</li> <li>Effects related to desired target; toxicity typically due to exaggerated pharmacology</li> </ul> |
| ٠ | Generally active in many species                                                   | <ul> <li>Activity limited to relevant species</li> <li>Typically non-human primates</li> </ul>                                     |

2x higher PoS to Phase 2 with an antibody versus a small molecule >50% of FDA-approved drugs in 2023 were small molecules

## **Clinical tractability**

- Is the proposed indication the best for the proposed molecular approach? Are there expansion indications?
- What is the size of the *treatable* patient population?
- Are there patient selection biomarkers to identify patients who will respond to treatment?
- Are there robust biomarkers to confirm adequate drug exposure to engage the target and induce the desired pharmacology?
- What are the clinical endpoints that will be required to gain FDA approval for the lead indication? How many patients will be needed to enroll? What is the estimated cost and timeline for Phase I and II studies?
- Does the unmet need for the proposed indication justify the risks associated with the approach?

![](_page_12_Figure_7.jpeg)

#### Unmet need & the medicine proposition

![](_page_13_Figure_1.jpeg)

#### **Commercial Considerations**

- Path to Intellectual Property
- Competitive landscape analysis (target and indication) to include marketed and pre-market pipeline
- Differentiation versus SoC & target-focused assets in clinical development
- Current market feedback from "friendly" VC community
- Value/de-risking profile

#### Target Product Profile for Addiction (Example)

| Product Targets                  | Minimum                                                                                                                                                                                                      | Preferred                                                                                            |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Therapeutic Modality             | Small molecule drug                                                                                                                                                                                          | Small molecule drug                                                                                  |
| Primary Product<br>Indication    | Prevention of relapse from opioid addiction                                                                                                                                                                  | Prevention of relapse from all substances of abuse, including opioids, cocaine, ETOH, nicotine, etc. |
| Patient Population               | Adults with opioid use disorder in or after rehab/detox                                                                                                                                                      | Adolescent and Adult patient populations with substance use disorders in or after rehab/detox        |
| Treatment Duration               | Chronic (1 month- 2 years)                                                                                                                                                                                   | Chronic (1 month- 2 years)                                                                           |
| Route of                         | patch, injection                                                                                                                                                                                             | Oral + patch + injection                                                                             |
| Administration                   |                                                                                                                                                                                                              |                                                                                                      |
| Dosage Form                      | Combination with SOC                                                                                                                                                                                         | Monotherapy + Combination with SOC                                                                   |
| Dose Regimen                     | Daily or weekly or monthly, chronic                                                                                                                                                                          | 1-2 times per day acute, weekly, monthly chronic                                                     |
| Efficacy                         | Better than SOC when given alone or in combination with FDA approved maintenance/detox therapies for opioid abuse including Suboxone (buprenorphine and naloxone), Vivitrol (naltrexone), naloxone           | Better than SOC decrease in relapse behaviors                                                        |
| Safety Profile                   | No significant adverse effects given alone or in combination with FDA approved maintenance/detox therapies for opioid abuse including Suboxone (buprenorphine and naloxone), Vivitrol (naltrexone), naloxone | No significant adverse effects given alone or in combination with FDA approved SOCs                  |
| Product Stability and<br>Storage | Stable in long term pharmacy storage                                                                                                                                                                         | Stable in long term pharmacy storage                                                                 |

#### The Target Development Candidate Profile (TCP)

#### Small molecule example

|                         | PARAMETER                                                                                                                | VALUE | OPTIMAL                                                        |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------|
| In-Vitro Activity       | Biochemical EC <sub>50</sub>                                                                                             |       | ≤ 10 nM                                                        |
|                         | Cell Assay IC <sub>50</sub>                                                                                              |       | ≤ 100 nM                                                       |
| In Vivo Activity        | Single Agent Efficacy                                                                                                    |       | ≤50 mg/kg/day                                                  |
| CYP Profiling           | CYP Inhibition IC <sub>50</sub>                                                                                          |       | > 10 µM                                                        |
|                         | TDI IC <sub>50</sub>                                                                                                     |       | No IC <sub>so</sub> shift                                      |
|                         | CYP Induction                                                                                                            |       | None                                                           |
| Selectivity             | hERG IC <sub>20</sub> (µM)                                                                                               |       | > 50 μM                                                        |
|                         | Selectivity (as appropriate)                                                                                             |       | > 100-fold                                                     |
|                         | Receptor profiling                                                                                                       |       | < 50% inhibition at 10 µM                                      |
|                         | Ames Test                                                                                                                |       | Not mutagenic                                                  |
| ADME                    | Solubility PBS pH 7                                                                                                      |       | > 30 µM                                                        |
|                         | PPB (% free fraction)                                                                                                    |       | Measurable and similar across species                          |
|                         | Hepatocytes in vitro % remaining @ 2h                                                                                    |       | > 50%                                                          |
|                         | Metabolite profiling                                                                                                     |       | Tox species needs to produce metabolites produced<br>in humans |
|                         | Transporter Studies (P-gP, BCRP, Substrate &<br>Inhibition)                                                              |       | >10 μM IC <sub>50</sub>                                        |
| РК                      | Mouse (AUC, CL, t <sub>1/2</sub> , V <sub>d</sub> , F%)                                                                  |       | Orally bioavailable                                            |
| Single Dose             | Rat (AUC, CL, t <sub>1/2</sub> , V <sub>d</sub> , F%)<br>Monkey or Dog (AUC, CL, t <sub>1/2</sub> , V <sub>d</sub> , F%) |       | Appropriate for QD dosing                                      |
|                         |                                                                                                                          |       | Similar across species                                         |
| Tolerability<br>Studies | Two species 10-14 day, 3 dose levels non-GLP                                                                             |       | Tolerated with > 10x T.I.                                      |
| Clinical Studies        | Human Dose: projection based on preclinical<br>ADME/PK/Efficacy                                                          |       | < 1000 mg daily                                                |
|                         | Target Engagement biomarker assay<br>developed for use in clinic                                                         |       |                                                                |

#### mAb example

| Parameter               | Criteria                                                                                                                                                                                             |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Binding and Selectivity | <ul> <li>Binding to target: K<sub>D</sub> &lt; 0.2 nM</li> <li>Crossreactivity to cynomolgus and mouse targets: within 3-fold of human</li> <li>No binding to isoform 2 of target at 1 µM</li> </ul> |
| <i>In vitro</i> Potency | <ul> <li>Inhibition of ligand binding: IC<sub>90</sub> &lt; 0.5 nM</li> <li>Reduction in cytokine secretion: IC<sub>50</sub> &lt; 0.5 nM</li> </ul>                                                  |
| <i>In vivo</i> Efficacy | Disease-relevant mouse model: > 50% reduction in tissue damage                                                                                                                                       |
| Preclinical Safety      | No toxicity at doses up to 50 mg/kg in cynomolgus monkeys                                                                                                                                            |
| Pharmacokinetics        | Cynomolgus PK profile that supports 1x monthly s.c. dosing                                                                                                                                           |
| Manufacturability       | <ul> <li>Favorable CMC (Chemistry, Manufacturing and Control) profile for large-scale<br/>production and high-concentration liquid formulation</li> </ul>                                            |

#### Translational funding, How do I get there?

![](_page_17_Figure_1.jpeg)

#### Examples of Translational Funding vehicles for Therapeutics (Retained IP rights)

| Funding Agency   | Therapeutic Modality                                                                | Indication                          | Funding Amount and time period                                                          | Entry criteria                                                                                                                             | Funding intervals                                       |
|------------------|-------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| NHLBI (Catalyze) | Product:<br>Drugs, devices,<br>diagnostics, biologics, and<br>enabling technologies | Heart, Lung, Blood and<br>Sleep     | R61: ≤ \$350,000 direct<br>costs per year –R33: ≤<br>\$350,000 direct costs per<br>year | R61 (product definition<br>phase):<br>Early stage ok, but<br>preliminary data needed<br>-R33 minimum of a 0.25:1<br>non-Federal cash match | Feb, July, and Nov<br>each year<br>(different for AIDS) |
| Deerfield        | SM, ATB, Gene Therapy                                                               | Agnostic                            | Full development, Stage<br>gated                                                        | Academic consortium member                                                                                                                 | Monthly submissions                                     |
| C-Path TRxA      | SM, ATB, ADC, Peptides proteins                                                     | Agnostic                            | \$250K-1M                                                                               | Early lead or later                                                                                                                        | January-Open call<br>October-Award initiation           |
| NATA             | Nucleic Acid Therapies                                                              | Agnostic                            | TBD- Joint project with<br>academic partners                                            | POC in animal model                                                                                                                        | N/A                                                     |
| CARB-X           | Antibiotics, vaccines, rapid diagnostics                                            | Agnostic-Drug resistant<br>bacteria | TBD                                                                                     | Hit-to-lead is minimum<br>criteria                                                                                                         | N/A                                                     |
| NCBC TRG         | Agnostic                                                                            | Agnostic                            | Up to \$144K to include<br>PM                                                           | Clear commercial de-<br>risking AIMs. Academic<br>only. Non-optioned or<br>licensed IP.                                                    | Cycle 1- August<br>Cycle2- January                      |

\* NCATS, Harrington Discovery, SBIR/STTR, etc.

## Hallmark criteria for Translational Granting mechanisms

- Hits at a minimum
- Additional characterization a plus
- End-product visualization (Therapeutic Hypothesis)
- High level competitive landscape and differentiation thesis
- Unencumbered IP
- development plan framework
- Most funding agencies provide ongoing development and business related guidance

End